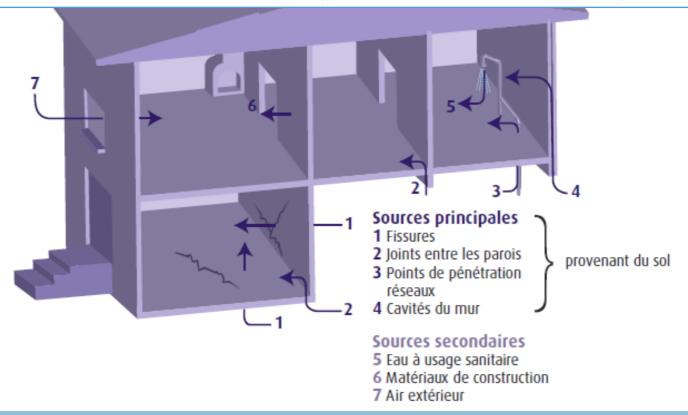
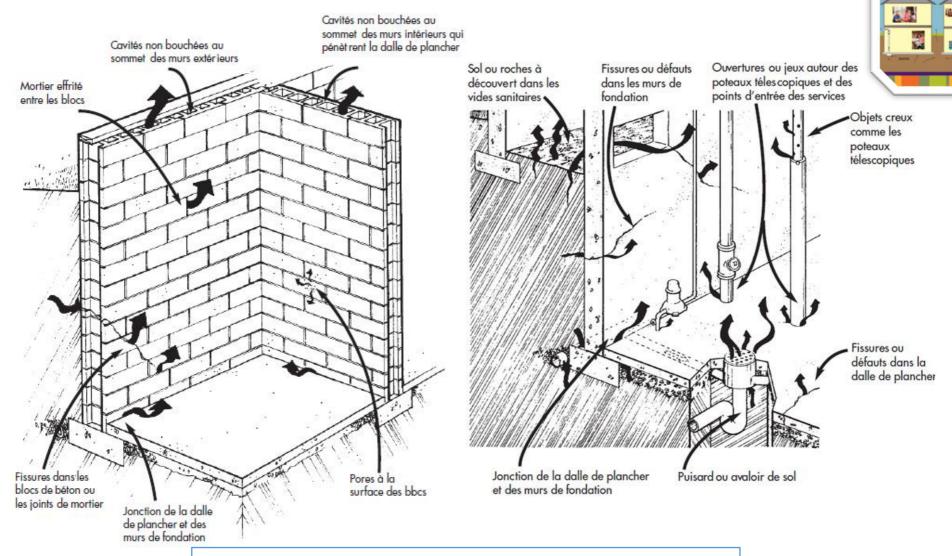


Agir sur le radon Dans le neuf ou l'existant

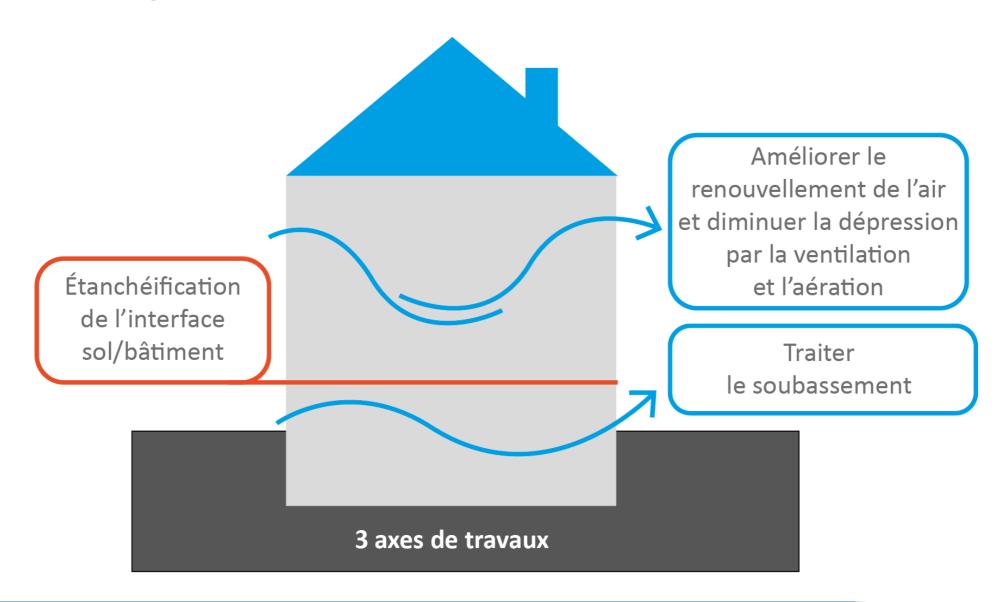
Radon et qualité de l'air intérieur dans les bâtiments


Stéphane COLLE, Chargé d'études en qualité sanitaire des bâtiments stephane.colle@cerema.fr


Du radon dans les bâtiments ?

Bâtiment « radonné » si mal étanché (plancher bas ou murs enterrés) ou mal ventilé

Du radon dans les bâtiments ?


Chaque défaut d'étanchéité contribue à [Rn] mesurée

LE RADON

GUIDE DE RÉDUCTION POUR LES CANADIENS

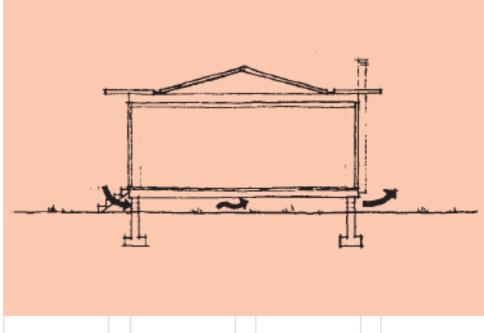
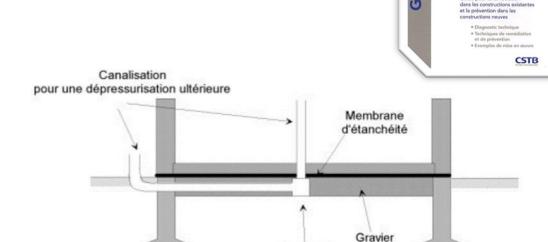
Stratégie anti-radon

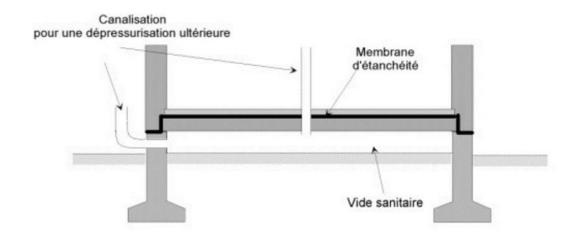
Pas d'obligation au niveau de l'acte de construire

- Réglementation « radon » = surveillance
- RT2012 : des bâtiments plus étanches, plus de DFLX -> Moins de radon (?)
- Aller au-delà de la réglementation... voire sur des certifications environnementales
 - mais là encore, obligation de mesures à réception, et pas toujours de moyens à mettre en œuvre (HQE Performance, Sentinel Hause, WELL, Airinterieur...)

- Limiter la surface de contact avec le sol (plancher bas, sous-sols, murs enterrés...)
- Assurer l'étanchéité, à l'eau et à l'air, entre le bâtiment et son sous-sol, au niveau du plancher bas mais aussi des remontées de réseau et des joints périmétriques
- Privilégier les vide-sanitaires ventilés, les radiers et les dalles portées aux dalles indépendantes

Matériau	Epaisseur mm	Etanchéité au radon				
Feuilles d'étanchéité						
PEHD	1,5	oui				
PVC armé	1	oui				
Polymères bitumineux	3,8	oui				
Peintures, revêtements						
Peintures synthétiques	0,2	non				
Résines époxy	3	oui				
Matériaux de construction						
Béton armé	100	partiellement				
Briques silico-calcaire	150	non				
Plâtre	100	non				
Terre cuite	150	non				
Tableau 5.1: Etanchéité au radon de divers matériaux de construction (en l'absence de fissures et autres défauts).						

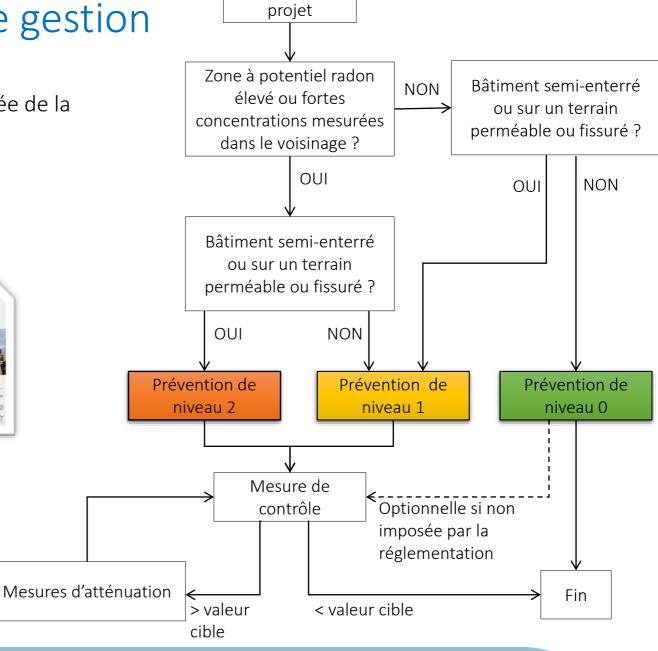

Fig. 6.4 : Ventilation de vides sanitaires sous le bâtiment.

- Veiller à la bonne ventilation du bâtiment en évitant les différences de pression entre le soubassement et la partie occupée
 - Mise en surpression du bâtiment (DFLX : débit insufflé > débit extrait)
 - Livraison
 - Réglages et filtres neufs à livraison
 - Vérification des débits d'air (SF/DF)
 - Carnet d'entretien
- Mettre éventuellement en œuvre une membrane anti-radon
 - Peu de produits : polyéthylène, PVC ou produits bitumineux
 - Pas d'avis technique du CSTB
 - Publication en octobre 2015 : norme NF ISO 11665-10
 - Membranes: Eradon, XTRn, Isofilma, Radostop, Elotene DS, Radon Block LVM... (Prix: 5 à 10 €/m²).
- Être vigilant lors de la mise en œuvre de puits climatique

 Mettre en place un système de mise en dépression du soubassement, à relier éventuellement ultérieurement à un ventilateur pour mise en dépression, à mettre en marche selon les résultats de mesure

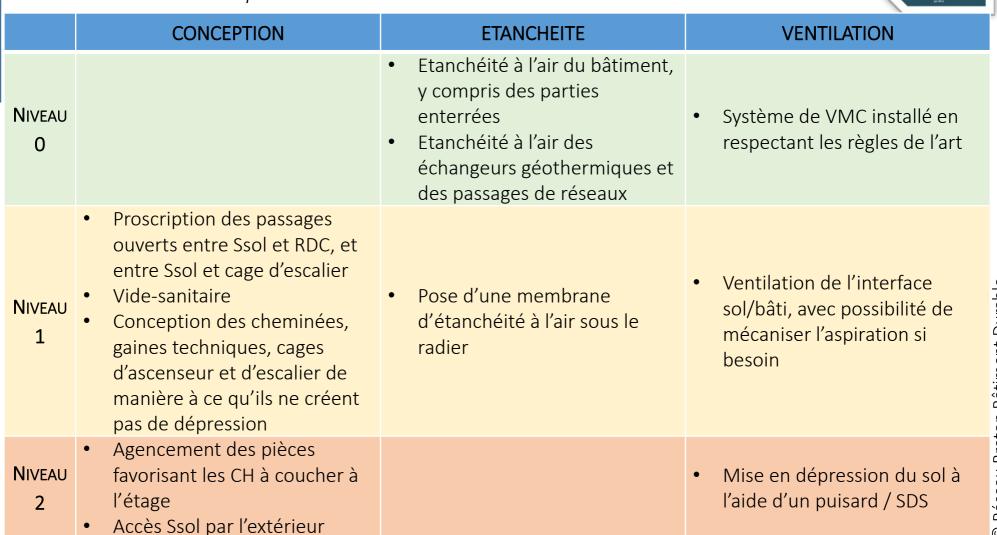
Puisard

Le radon dans


les bâtiments

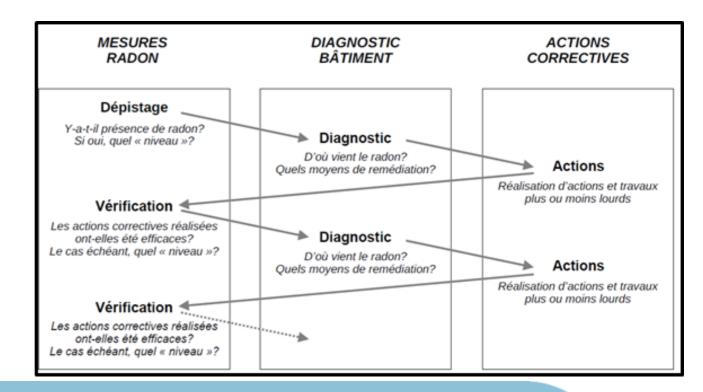
Solution de gestion

La méthode bretonne inspirée de la méthode suisse



Nouveau

Solution de gestion


La méthode bretonne inspirée de la méthode suisse

Agir dans les bâtiments existants > 300

- Chaque bâtiment est un cas particulier
- Les stratégie de remédiation proposées sont proportionnelles aux taux de radon mesurés :
 - 300 Bq/m³ à 1000 Bq/m³ : actions simples
 - > 1000 Bq/m³ : actions plus poussées
 - Travaux de remédiation à appliquer graduellement
- Vérifier l'efficacité des travaux réalisés par la mesure de radon

Agir dans les bâtiments existants > 300

 Guide d'<u>autoévaluation</u> du bâtiment à l'intention du MOA privé ou public (06/19)

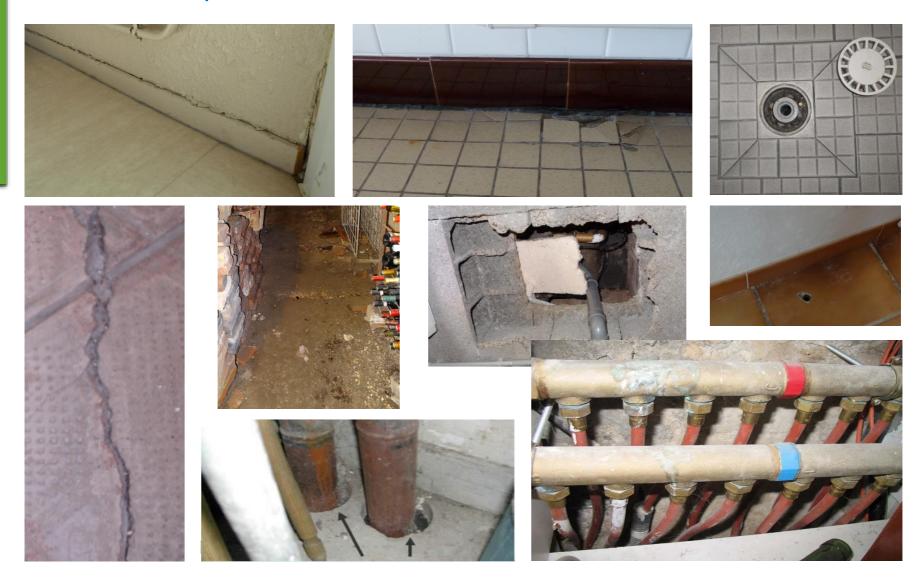
- Grille d'audit du Cerema
 - Outil facilitateur pour l'audit/l'expertise
 - Pour décrire le.s bâtiment.s, faire l'inventaire de ses systèmes de chauffage et de ventilation
 - Pour fournir de premiers éléments d'explication des niveaux mesurés
 - Donner des pistes possibles d'amélioration

Agir dans les bâtiments existants > 300

Bloc homogène

- Année de construction et données constructives
- Présence d'une cave, d'un vide sanitaire
- Nombre de niveaux, de pièces sèches et humides
- Vitrages, ventilation et chauffage, réseaux

Pièce

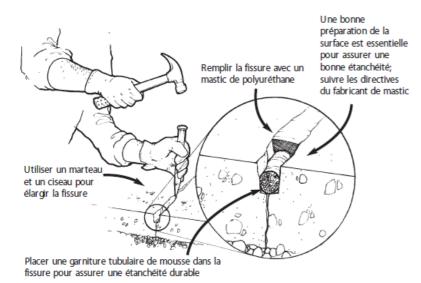

- Dimensions, ouvrants
- Examen de l'étanchéité des sols, murs, passage de réseaux
- Ventilation ? Aération ?

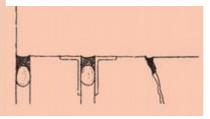
Solutions

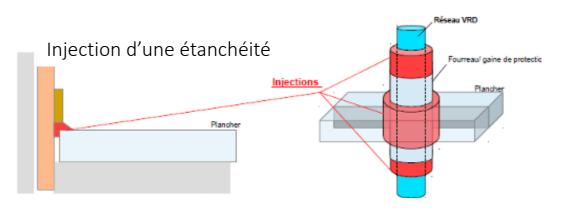
- Etanchement de l'interface sol-bâtiment / traitement du soubassement
- Ventilation : remise à niveau ou mise en place + aération et comportement
- Points singuliers : hotte aspirante, appareils à combustion, portes communicantes vers sous-sol, caves...

Points de pénétration du radon

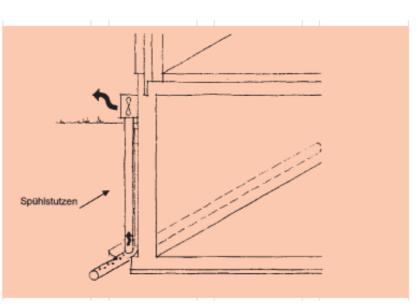
Points de pénétration du radon




Lutter contre la pénétration du radon


• Reboucher ponctuellement : fissures, joints sols-murs, arrivées et départs des réseaux par application d'un mastic d'étanchéité à l'air (acryliques, élastomère, à élasticité permanente, polyuréthane..)

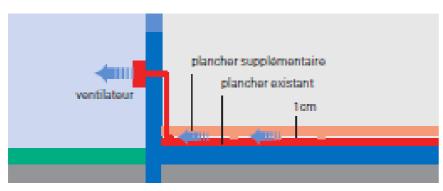
Étanchéification avec mastic à élasticité permanente

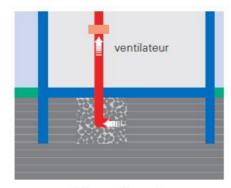

LE RADON

GUIDE DE RÉDUCTION POUR LES CANADIENS

Lutter contre la pénétration du radon

- Étanchement des portes, trappes, voire escaliers donnant sur un volume non habité (cave, vide sanitaire, garage...) (joints de compression périmétriques, seuils avec butée et joints, encloisonnement...)
- Traitement spécifique des murs semi-enterrés ou enterrés par drainage ou mise en dépression.





Sur terre-plein

- Dépose du sol, mise en œuvre d'une nouvelle dalle et d'un sol étanche (membrane anti-radon)
- Double plancher
- Mise en place d'un SDS

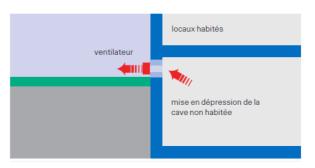
Ventilation d'un double plancher dans un local

Mise en dépression ponctuelle du terrain sous le bâtiment avec évacuation sur le toit

Rénovation de la structure sous le plancher : pose d'un système de drainage du radon

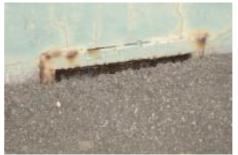
Un ventilateur situé à l'extérieur permet de créer une légère dépression sous la dalle

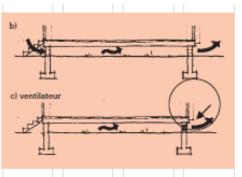
Ventilation ponctuelle (puisard à radon) – Excavation d'un puits


En cas de soubassement

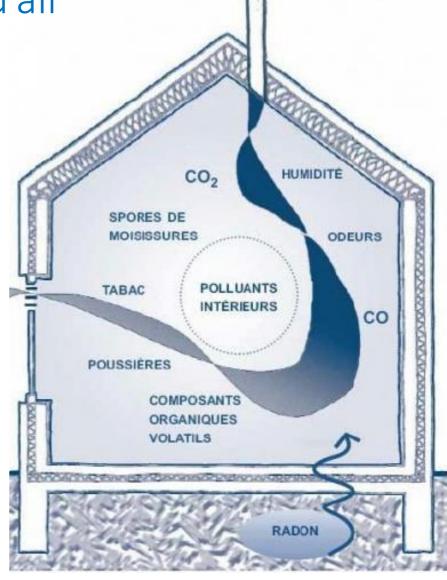
Noticed values de rechte

Partie de la control de la contr


- Cas de l'obturation d'une prise d'air pour appareil à combustion, prenant son air comburant dans la cave, vide sanitaire : nouvelle arrivée d'air donnant sur l'extérieur, en traversée de mur.
- Etanchement de surface (ou d'un double plancher ventilé) pour sol poreux existant (membranes en sous face de plancher, résine polymérisable...)
 - Jonction soignée avec murs.
- Ventilation du soubassement, voire extraction de l'air radonné vers l'extérieur



La ventilation



Améliorer le renouvellement d'air

- Dans le logement : ventilation permanente et générale, par balayage, avec des débits à atteindre depuis les arrêtés de 1982/1983
- Pour les travailleurs, code du travail (articles R4422-1 et suivants)
- Pour les usagers dans les ERP : le Règlement Sanitaire Départemental (Titre III – Dispositions applicables aux bâtiments autres que ceux à usage d'habitation et assimilés)
 - < 1000 voire 1300 ppm CO₂
 - Débits entrants/occupant si ventilation
 - 6 m³/occupant sinon

Améliorer le renouvellement d'air

- Beaucoup de défauts des systèmes de ventilations : dysfonctionnements !
 - Entrées d'air absentes, encrassées, voire bouchées par l'occupant
 - Extractions qui dysfonctionnent
 - Blocs moteurs à l'arrêt, horloge inopérante
 - Passages de transit d'air non conforme
 - Entretien inexistant
 - Système déséquilibré avec flux entrant < flux sortant, r dépression et favorisant la remonté de radon
- Mettre en place des protocoles d'aération
 - Solution palliative, mise en place immédiate
 - Mais non pérenne

Le cas d'école : une école

RSDT: 1300 ppm CO2 max / 15 m³/h/enfant – 18 m³/h/collégien, lycéen et +

VINITATION PLETORS OF THE PROPERTY OF THE PROP

Exemple d'évolution de concentration en CO2 :

Classe de 25 élèves, 2h cours -> 1/4h intercours -> 2h cours

Cas "sans ventilation":
infiltrations 0.2Vol/h
(intercours 4Vol/h)
Remarque: sans aération à
l'intercours, on atteindrait la
valeur de 6200 ppm au bout de
la période

considérée (4h15).

3800 ppm

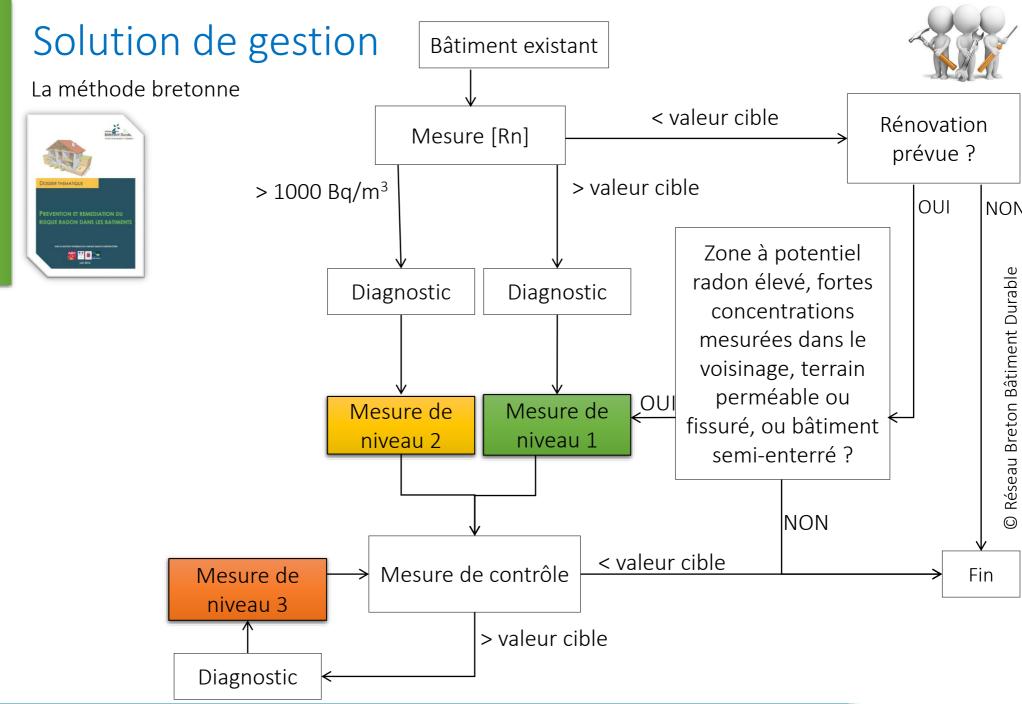
1800 ppm

1800 ppm

1100 ppm

1100 ppm

1100 ppm

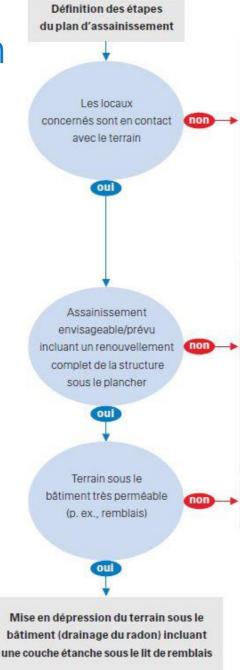

Cas " <u>avec ventilation</u> ": 18m³/h/pers->2.6Vol/h (en permanence)

Le cas des écoles

- Entretien régulier des systèmes de ventilation, si existants
 - Bouches d'entrées/sorties, blocs moteurs
 - Changement régulier des filtres
 - Nouvelles solutions techniques de nettoyages des conduits (Robots « ramoneur / aspirateur », soufflage et aspiration par section de gaines...)
 - Contrat d'entretien ?
- Fonctionnement efficient du système en place ?
 - Faire un diagnostic (<u>Guide du diagnostic Ecol'Air</u>)
- Autres fiches pratiques spécifiques Ecol'Air
 - Système de ventilation DF monobloc destiné aux salles de classe
 - Des solutions d'extraction d'air localisée dans les poubelles des locaux de changes

Solution de gestion

La méthode bretonne


		CONCEPTION	ETANCHEITE	VENTILATION
NIVEAU 1	•	Réaffectation des locaux : déplacement des CH à l'étage	 Traitement des défauts d'étanchéité les plus simples (trous, fissures, passages de réseaux) 	 Aération naturelle fréquente Création ou agrandissement EA Ventilation naturelle de la cave
Niveau 2	•	Séparation du sous- sol et du RDC, du sous-sol et de la cage d'escalier	 Pose d'une membrane d'étanchéité sur toutes les parties enterrées 	 Installation d'un système de VMC efficace Installation d'apports d'air frais pour les appareils à combustion (poêle, cuisinière, etc.) Mise en dépression du sel
NIVEAU 3	•	Accès à la cave par l'extérieur uniquement	 Pose d'une membrane d'étanchéité sous la dalle 	 Mise en dépression du sol Mise en dépression de l'interface sol/bâti

Solution de gestion

La méthode suisse

Assainissement de base

- Renforcement de l'étanchéité des éléments de la construction entre les parties habitées et inhabitées (cave, vide sanitaire ou cavités)
- Obturation des ouvertures, fissures, etc. visibles dans la maçonnerie en contact avec le terrain

Travaux supplémentaires

- Equilibrage des pressions entre l'intérieur et l'extérieur
- Mise en dépression du sous-sol (cave) ou du vide sanitaire
- Mise en dépression du terrain sous le bâtiment (puisard à radon)
- Installation mécanique d'amenée d'air frais

Assainissement de base

- Obturation des ouvertures, fissures, etc. visibles dans la maçonnerie en contact avec le terrain

Travaux supplémentaires

- Equilibrage des pressions entre l'intérieur et l'extérieur
- Mise en dépression du sol sous le bâtiment (puisard à radon)
- Installation mécanique d'amenée d'air frais
- Ventilation du double plancher et des murs dans certains locaux

Mise en dépression du terrain sous le bâtiment (drainage du radon)

Radon et QAI : quelles similitudes ?

Le radon est un polluant de l'air intérieur mais aussi un risque naturel

	Surveillance QAI ERP	Surveillance Radon ERP		
Qui ?	Propriétaire			
Où ?	Partout	Zones 3 (sauf si)		
Quand?	7 ans (sauf si > : 2 ans)	10 ans (sauf si travaux)		
Comment ?	Evaluation des moyens d'aération Plan d'action ou mesures externalisées Affichage Préfet prévenu si > Expertise si >	Dépistage externalisé Affichage Préfet prévenu si > Expertise si >		
Combien?	3 k€ / établissement Si mesures par OAcc	800 € / établissement Mesures obligatoires par OA		
Pourquoi ?	Pour protéger les populations sensibles qui fréquentent l'établissement			

Radon et QAI : quelles similitudes ?

>	Benz	Formaldéhyde	
Diagnostic	Source extérieur	Sources intérieures principales ?	
	Quid du Renouvellement d'Air (RA) dans les locaux ?		
Actions	Source extérieure : isoler le bâtiment de la source, adapter le RA à la pollution extérieure (cf perchloroéthylène)	Source intérieure : éliminer la source intérieure et améliorer éventuellement le RA via l'aération / la ventilation	Eliminer la source intérieure, la remplacer et améliorer éventuellement le RA via l'aération / la ventilation

ICONE > = 3 : confinement ou en cas de > HCHO/Bn, se poser la question de la source mais aussi du RA => se poser la question du radon, en zone 3, en RDC

Divers

- Les différents documents cités et en lien depuis ce support
- Faire intervenir un professionnel du bâtiment, en lien avec le radon :
 - Expert pour la phase diagnostic bâtiment : ? Faire référence à la bibliographie
 - Artisans/entreprises : ? RGE, formation FFB...
 - Guide de la QAI (avt, pdt, ap. les travaux)
- Particuliers : entretenir son logement avec le Carnet de santé de l'habitat
- Ne jamais s'engager sur des travaux coûteux immédiatement, toujours vérifier l'efficacité des mesures et travaux entrepris par une mesure de vérification
- Auto-contrôle ou/puis organisme agréé de niveau N1A ASN
- Possibilité de faire appel aux services d'un OA N2 ASN qui va identifier les sources/voies d'entrée/voie de transfert du radon


Agir sur le radon

Mettre d'abord en œuvre des actions :

- En aérant et en entretenant sa ventilation
- En rebouchant les fissures, les trous etc.
- En ventilant le soubassement (si existant)
- Le tout avec une approche transversale (qai, thermique, confort et usages)

Puis, en mesurant à nouveau le radon :

- $< 300 \rightarrow$ continuer à bien entretenir son bâtiment
- > 300 → faire un diagnostic du bâtiment en allant plus dans le détail, avec une démarche de pas à pas

Merci de votre attention

Établissement public à caractère administratif (EPA), sous la tutelle conjointe du ministère de la Cohésion des Territoires et du ministère de la Transition écologique et solidaire, le Cerema développe des relations étroites avec les collectivités territoriales qui sont présentes dans ses instances de gouvernance.